Quaternionic Bundles and Betti Numbers of Symplectic 4-manifolds with Kodaira Dimension Zero
نویسنده
چکیده
The Kodaira dimension of a non-minimal manifold is defined to be that of any of its minimal models. It is shown in [12] that, if ω is a Kähler form on a complex surface (M,J), then κ(M,ω) agrees with the usual holomorphic Kodaira dimension of (M,J). It is also shown in [12] that minimal symplectic 4−manifolds with κ = 0 are exactly those with torsion canonical class, thus can be viewed as symplectic Calabi-Yau surfaces. Known examples of symplectic 4−manifolds with torsion canonical class are either Kähler surfaces with (holomorphic) Kodaira dimension zero or T 2−bundles over T 2 ([10], [12]). They all have small Betti numbers and Euler numbers: b+ ≤ 3, b ≤ 19 and b1 ≤ 4; and the Euler number is between 0 and 24. It is speculated in [12] that these are the only ones. In this paper we prove that it is true up to rational homology.
منابع مشابه
Virtual Betti numbers and virtual symplecticity of 4-dimensional mapping tori
In this note, we compute the virtual first Betti numbers of 4-manifolds fibering over S1 with prime fiber. As an application, we show that if such a manifold is symplectic with nonpositive Kodaira dimension, then the fiber itself is a sphere or torus bundle over S1. In a different direction, we prove that if the 3-dimensional fiber of such a 4-manifold is virtually fibered then the 4-manifold i...
متن کاملKodaira Dimension and Symplectic Sums
Modulo trivial exceptions, we show that symplectic sums of symplectic 4-manifolds along surfaces of positive genus are never rational or ruled, and we enumerate each case in which they have Kodaira dimension zero (i.e., are blowups of symplectic 4-manifolds with torsion canonical class). In particular, a symplectic four-manifold of Kodaira dimension zero arises by such a surgery only if it is d...
متن کاملAlmost Complex 4-manifolds with Vanishing First Chern Class
An odd Seiberg-Witten invariant imposes bounds on the signature of a closed, almost complex 4-manifold with vanishing first Chern class. This applies in particular to symplectic 4-manifolds of Kodaira dimension zero.
متن کاملBetti Numbers of 3-sasakian Quotients of Spheres by Tori
We give a formula for the Betti numbers of 3-Sasakian manifolds or orbifolds which can be obtained as 3-Sasakian quotients of a sphere by a torus. This answers a question of Galicki and Salamon about the topology of 3-Sasakian manifolds. A (4m+3)-dimensional manifold is 3-Sasakian if it possesses a Riemannian metric with three orthonormal Killing elds deening a local SU(2)-action and satisfying...
متن کاملAdditivity and Relative Kodaira Dimensions
The notion of Kodaira dimension has been defined for complex manifolds in [16], for symplectic 4−manifolds in [23] (see also [35], [17]). It is shown in [5] (and [23]) that these two definitions are compatible in dimension 4. Furthermore, we calculate it for some (4-dimensional) Lefschetz fibrations when the base has positive genus. In [50], this notion is extended to 3−dimensional manifolds vi...
متن کامل